Internalization and trafficking of guanylyl (guanylate) cyclase/natriuretic peptide receptor A is regulated by an acidic tyrosine-based cytoplasmic motif GDAY.

نویسندگان

  • Kailash N Pandey
  • Huong T Nguyen
  • Renu Garg
  • Madan L Khurana
  • Jude Fink
چکیده

We have identified a GDAY motif in the C-terminal domain of guanylyl cyclase (guanylate cyclase)/NPRA (natriuretic peptide receptor A) sequence, which serves a dual role as an internalization signal and a recycling signal. To delineate the role of the GDAY motif in receptor internalization and sequestration, we mutated Gly920, Asp921 and Tyr923 to alanine residues (GDAY/AAAA) in the NPRA cDNA sequence. The cDNAs encoding wild-type and mutant receptors were transfected in HEK-293 cells (human embryonic kidney 293 cells). The internalization studies of ligand-receptor complexes revealed that endocytosis of 125I-ANP by HEK-293 cells expressing G920A, Y923A or GDAY/AAAA mutant receptor was decreased by almost 50% (P<0.001) when compared with cells expressing the wild-type receptor. However, the effect of D921A mutation on receptor internalization was minimal. Ligand-mediated down-regulation of G920A, Y923A and GDAY/AAAA mutant receptors was decreased by 35-40% when compared with wild-type NPRA. Subsequently, the recycling of internalized D921A and GDAY/AAAA mutant receptors from the intracellular pool was decreased by more than 40+/-4% when compared with wild-type NPRA. Recycling of G920A and Y923A mutant receptors was also decreased, but to a significantly lesser extent compared with the D921A or GDAY/AAAA mutant receptors. We conclude that the Gly920 and Tyr923 residues within the GDAY consensus motif are necessary for internalization, and that residue Asp921 is important for recycling of NPRA. The current results provide new evidence for a dual role of the GDAY sequence motif in ligand-mediated internalization, recycling and down-regulation of a single-transmembrane receptor protein NPRA.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Role of FQQI motif in the internalization, trafficking, and signaling of guanylyl-cyclase/natriuretic peptide receptor-A in cultured murine mesangial cells.

Binding of the cardiac hormone atrial natriuretic peptide (ANP) to transmembrane guanylyl cyclase/natriuretic peptide receptor-A (GC-A/NPRA), produces the intracellular second messenger cGMP in target cells. To delineate the critical role of an endocytic signal in intracellular sorting of the receptor, we have identified a FQQI (Phe(790), Gln(791), Gln(792), and Ile(793)) motif in the carboxyl-...

متن کامل

Down-regulation does not mediate natriuretic peptide-dependent desensitization of natriuretic peptide receptor (NPR)-A or NPR-B: guanylyl cyclase-linked natriuretic peptide receptors do not internalize.

Natriuretic peptide receptor A (NPR-A/GC-A) and B (NPR-B/GC-B) are members of the transmembrane guanylyl cyclase family that mediate the effects of natriuretic peptides via the second messenger, cGMP. Despite numerous reports of these receptors being down-regulated in response to various pathological conditions, no studies have actually measured desensitization and receptor internalization in t...

متن کامل

Endocytosis and Trafficking of Natriuretic Peptide Receptor-A: Potential Role of Short Sequence Motifs

The targeted endocytosis and redistribution of transmembrane receptors among membrane-bound subcellular organelles are vital for their correct signaling and physiological functions. Membrane receptors committed for internalization and trafficking pathways are sorted into coated vesicles. Cardiac hormones, atrial and brain natriuretic peptides (ANP and BNP) bind to guanylyl cyclase/natriuretic p...

متن کامل

Subcellular trafficking of guanylyl cyclase/natriuretic peptide receptor-A with concurrent generation of intracellular cGMP

Atrial natriuretic peptide (ANP) activates guanylyl cyclase/natriuretic peptide receptor-A (GC-A/NPRA), which lowers blood pressure and blood volume. The objective of the present study was to visualize internalization and trafficking of enhanced GFP (eGFP)-tagged NPRA (eGFP-NPRA) in human embryonic kidney-293 (HEK-293) cells, using immunofluorescence (IF) and co-immunoprecipitation (co-IP) of e...

متن کامل

Functional silencing of guanylyl cyclase/natriuretic peptide receptor-A by microRNA interference: analysis of receptor endocytosis.

Guanylyl cyclase/natriuretic peptide receptor-A (GC-A/NPRA) is the principal receptor for the regulatory action of atrial and brain natriuretic peptides (ANP and BNP) and an important effector molecule in controlling of extracellular fluid volume and blood pressure homeostasis. We have utilized RNA interference to silence the expression of GC-A/NPRA gene (Npr1), providing a novel system to stud...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Biochemical journal

دوره 388 Pt 1  شماره 

صفحات  -

تاریخ انتشار 2005